DYNAMIC TARGETING FOR IMPROVED TRACKING OF STORM FEATURES
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ABSTRACT

Dynamic Targeting (DT) will enable future Earth Observ-
ing instruments to intelligently reconfigure and point instru-
ments to dramatically enhance science return. In this work
we present a realistic simulation study of DT for tracking
of storm features. To this end we have developed several
algorithms from Operations Research and Artificial Intelli-
gence/heuristic search. We benchmark these algorithms and
show that DT is a powerful tool with the potential to signifi-
cantly improve science yield.

Index Terms— dynamic targeting, artificial intelligence,
storm science.

1. INTRODUCTION

While a new generation of unprecedented miniaturized Earth
observing instruments has emerged, fundamental physics of
remote sensing dictates that high spatial resolution at reduced
size (and therefore power, cost) forces reduced swath. This
places a premium on measurement on acquiring the highest
science value data enabled by pointable instruments.

Dynamic targeting (DT) can improve the efficiency of
conventional expensive narrow swath instruments. DT uses
information from a lookahead sensor to identify targets for
the primary sensor which can then be pointed or reconfigured
to improve science yield. DT also addresses a major ineffi-
ciency in many Earth observing missions, where the majority
of their data is not usable due to cloud cover and other poor
observing conditions. Additionally, for other instruments that
may be limited by energy, data volume, or configuration, DT
can be used to best operate an instrument by turning on only
when high value targets are detected (to conserve energy),
varying compression/summarization (to conserve data vol-
ume), and control other instrument settings (gain, frequency,
chirp rate, etc.). DT is applicable across a wide range of
missions and will enable far better coverage of transient phe-
nomena, such as storm systems that are of high scientific
interest. We expect it to become commonplace across many
if not most future Earth Science missions.
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In this work we present a simulation study focused on us-
ing DT for effectively tracking rare storm features. To this
end we have developed several algorithms that draw from a
rich heritage of methods including Operations Research, as
well as Artificial Intelligence/heuristic search methods. We
benchmark these algorithms and show that DT is a powerful
tool for improving science return.

2. RELATED WORK

Rapid cloud screening has been used onboard aircraft to
remove and compress clouds to reduce data volume [1]. An-
other example of cloud avoidance work has been completed
on TANSO-FTS-2 where intelligent targeting is utilized to
minimize observations compromised by the presence of
clouds [2]. Hasnain et al. at NASA Jet Propulsion Labo-
ratory use both a greedy and a graph search based algorithm
to select the most clear sections of sky during a flyover [3].
Similar ongoing work includes the Smart Ice Cloud Sensing
(SMICES) smallsat concept, a radar application that intelli-
gently targets storms and clouds [4]. Despite the opposite
goal of the cloud-minimization problem, it operates in a sim-
ilar manner by picking an area in the instrument field of
view to analyze. SMICES targets images at a rapid rate, on
the order of seconds, and its planner runs as a continuous
problem. Moreover, SMICES uses multiple cloud labels to
identify different targets instead of the labels used for cloud
avoidance (cloud vs. clear). This gives SMICES flexibility
on which targets to analyze and allows scientists to tailor
its algorithm to target the clouds that best align with their
scientific interests.

3. SIMULATION STUDY

The simulation study consists of an Earth science satellite
whose mission is to analyze storm clouds. The satellite has
two onboard instruments: a primary radar with a narrow
swath, and a secondary sensor with a wider field of view
that can only be used for lookahead. Similarly to SMICES
[4], we defined a duty cycle of 20% so each radar measure-
ment consumes 5% while the satellite battery recharges 1%



Fig. 1. Global data set and orbit with a 65 degree inclina-
tion. The simulation consists of 18,000 time steps spanning
10 hours. Three different classes of storm clouds were con-
sidered: no storm (0), lesser storm (1), and storm (2).

at each time step. General Mission Analysis Tool (GMAT)
was used to simulate the orbital dynamics and to generate
realistic satellite trajectories. We simulated a low Earth orbit
with a 65 degree inclination (Figure 1), a 400 km altitude, an
approximate period of 95 minutes, and an eccentricity of 0.
The experiment consists of 18,000 time steps at 2 seconds per
time step, spanning a total of 10 hours.

The previous parameters were chosen to emulate the
Global Precipitation Measurement (GPM) mission [5]. GPM
is a joint mission between NASA and JAXA to make fre-
quent observations of Earth’s precipitation. It works with a
satellite constellation to provide full global coverage. GPM
carries two instruments, here we focus on the Dual-frequency
Precipitation Radar (DPR) which can measure precipitation
characteristics in the atmospheric column in three dimen-
sions and covers a 245 km swath. Additionally, we assumed
it carries a lookahead sensor with a 680 km reach.

In order to identify storm clouds at a global scale we
merged two different data products. The first one consists
of precipitation estimates from the GPM Integrated Multi-
satellitE Retrievals (IMERG) [6]. The second one consists
of infrared brightness (IR) temperature data from the NOAA
Climate Prediction Center/NCEP/NWS [7]. These two data
products were aligned and resampled to a resolution of 4
km/pixel. IR data only covers latitudes within the (—60°,
60°) range (Figure 1). Additionally, both data sources con-
sist of half-hourly measurements from January 1st, 2020.
Time interpolation was used in the simulation study to bet-
ter capture the evolution of storms throughout time. These
merged products allowed us to differentiate three different
storm classes: no storm, lesser storm, and storm (Figure 1).
Storms are much rarer than lesser storms, and so on. The
corresponding precipitation and IR temperature thresholds
for classification are shown in Table 1.

4. DYNAMIC TARGETING ALGORITHMS

In this work we compare six different algorithms (Figure 2).
Four of them are dynamic targeting algorithms that are based
on greedy heuristics and can be easily deployed onboard air-

Table 1. Storm classification thresholds.

| Precipitation | IR Temperature

No storm < 5 mm > 240K
Lesser storm > 5 mm > 240K
Storm > 5 mm < 240K

craft and spacecraft. The other two methods provide lower
and upper bounds on performance.

4.1. Random

The random algorithm targets the pixel under nadir 20% of
the time to ensure that it meets energy requirements. It is rep-
resentative of most targeting methods on current Earth Sci-
ence satellites. It is indifferent to the clouds it is flying over
and will most likely miss many important storm clouds. It
provides a lower bound on performance.

4.2. Greedy Nadir

The greedy nadir algorithm improves upon the random algo-
rithm by controlling when the radar is turned on. It utilizes
the system’s current energy state and the storm cloud type un-
der nadir to determine when the radar is turned on instead of
making random decisions. This allows the system to save en-
ergy when there are no interesting clouds, and use the stored
energy when there are storms.

4.3. Greedy Radar

The greedy radar algorithm expands its view along the path of
the satellite to include the entirety of the radar’s reachability.
The state of charge determines which cloud types are able to
be analyzed, and a simple greedy search inside of the radar’s
reachability finds the highest valued cloud with a tiebreaker
going to the pixel that is closest to nadir.

4.4. Greedy Window

The greedy window algorithm expands its view using the
lookahead sensor, meaning that it is able to account for future
clouds along the radar’s path. The algorithm first calculates
how many clouds can be analyzed based on the current state
of charge (SOC). It then counts the number of interesting
storm clouds present within the knowledge window. The
power is then allocated for all of the storm pixels, followed
by the lesser storms, and then any leftover power is reserved
as free. The highest valued pixel within the radar’s view that
has allocated power is imaged. The tiebreaker still goes to the
pixel closest to nadir. The pixel under nadir is imaged if no
storm clouds are within the radar’s view, there is free power,
and there is a sufficient SOC.



Fig. 2. Dynamic targeting algorithms for storm feature tracking. The random and greedy nadir algorithms are exclusively aimed
at nadir (left). The greedy radar algorithm has a wider field of view and can collect samples off nadir, but is restricted by the
radar’s swath (center left). The greedy window and greedy path algorithms leverage a lookahead sensor with even more reach
to better allocate resources for future measurements (center right). The dynamic programming approach has a full lookahead
(assuming the path is finite) and achieves optimality via backward induction, however it cannot be deployed using realistic

instrument and computational resources (right).

4.5. Greedy Path

Greedy path improves upon greedy window by ranking the
priority of each storm and lesser storm pixel in the knowledge
window. The algorithm begins by collecting the locations
of all these pixels and calculating the available radar cycles
based on the SOC. Once collected, the two pixel types are
sorted independently by their lateral distance to nadir. This
means that a newly scanned storm cloud pixel that will even-
tually cross nadir will have a higher priority than an off-nadir
convection core pixel within the radar’s view. The sorted list
of lesser storm clouds is then concatenated to the end of the
sorted list of storm cloud pixels to create a priority queue.
Greedy path then assigns one radar cycle to the highest pri-
ority pixel and checks if it is within the radar’s view. If it is
viewable, the pixel is analyzed. Otherwise, it continues until
the free cycles run out or the priority queue ends. If free cy-
cles are left over after the end of the priority queue and the
SOC is sufficient, the algorithm will analyze nadir.

4.6. Dynamic Programming

The dynamic programming (DP) algorithm is optimal and
provides an upper bound on performance for the previous
sampling methods. Its lookahead comprises the whole path
to be traversed, which is assumed to be finite. The states
are given by the location of the satellite and the SOC, while
the actions consist of the pixels that are within the radar’s
reach. This algorithm uses backward induction to determine
the optimal sequence of actions. The objective function is
additive and the reward values for each storm type are as fol-
lows: no sample 0, no storm 1, lesser storm 1 x 104, and
storm 1 x 10%. These values virtually eliminate tradeoffs
among different cloud types. Finally, the tiebreaker goes to
pixels closest to nadir. Unfortunately, this algorithm cannot
be deployed in most cases onboard aircraft or spacecraft for
the following reasons. First, it is computationally expensive
and planning requires minutes or hours depending on the to-
tal path length; second, a lookahead sensor with such range is

State of Charge: 100 State of Charge: 68

Fig. 3. Example of the greedy path algorithm. Left: It saves
energy for valuable storm measurements in the near future,
in this case within the lookahead sensor range. Right: A few
time steps later, the algorithm uses the saved energy to track
a storm that is now within the radar’s reach.

unrealistic. However, this algorithm is valuable for evaluation
and comparison purposes.

5. RESULTS

Overall we observe that DT methods are good at choosing
when to save energy and when to collect measurements (Fig-
ure 3). Results indicate that DT delivers a significant increase
in performance (Table 2). The baseline random algorithm is
always outperformed and tends to gather too much non-storm
data because it does not use any auxiliary information. The



Table 2. DT algorithms’ performance as percentages of an-
alyzed clouds per storm category. Random and DP provide
lower and upper bounds on performance, respectively.

Algorithm Off No Storm | Lesser Storm | Storm
Random 80.03% 18.21% 1.69% 0.07%
G. Nadir | 79.53% 15.87% 4.42% 0.18%
G.Radar | 76.69% 7.81% 14.58% 0.92%

G. Window | 79.75% 6.92% 11.39% 1.93%

G. Path 79.75% 6.92% 11.12% 221%
DP 79.69% 6.28% 11.40% 2.63%

greedy nadir approach has a slightly better performance, but it
is still very constrained. Greedy radar does a much better job
since it can sample from many more pixels, however it sam-
ples too many lesser storms. Greedy window and greedy path
perform even better because they exploit the information from
the lookahead sensor to save energy more effectively. DP, as
expected, outperforms the rest as it is omniscient and opti-
mal. Nonetheless, despite substantially more limited looka-
heads (250 km against 40,075 km), most DT algorithms have
a performance that is decently close to the optimum.

6. CONCLUSIONS AND FUTURE WORK

This work discusses DT as a powerful approach that leverages
lookahead sensor data to optimize the utilization of a primary
sensor, commonly subject to operation constraints, and thus
improve science return. We describe several DT algorithms
and test them via a realistic simulation study that involves
storm feature tracking. The experimental results indicate that
DT is a very promising approach. When comparing the best
performing algorithm, greedy path, against the baseline ran-
dom algorithm, significantly more storm clouds are sampled
while respecting energy constraints. Furthermore, the DT al-
gorithms tend to have a competitive performance when com-
pared to our dynamic programming method.

Future work will keep improving the realism of our sim-
ulation study; for instance, we plan to capture more physical
constraints such as off-nadir measurements with deteriorat-
ing quality. Further research will continue to investigate the
advantages of DT using other cloud and storm data sets. Fi-
nally, working closely with leading scientists, we will refine
use cases and quantify performance improvement for other
application domains such as tracking volcanic targets.
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